
JAK DZIAŁAJĄ FORMULARZE

Odczyt danych metodami POST i GET

Metody przesyłania

POST GET

<form action="" method="POST">… <form action="" method="GET">…

Dane przesyłane w treści żądania
HTTP, nie są widoczne w URL-u.

Dane są dołączane do URL-a w
formacie ?klucz=wartosc&klucz2=... .

METODA UKRYTA METODA JAWNA

Dane zapisują się w tablicy
superglobalnej $_POST

Dane zapisują się w tablicy
superglobalnej $_GET

Budowa prostego formularza

Imię: <input type="text" name="imie" />

Nazwisko: <input type="text" name="nazwisko" />

Wiadomość: <textarea name="wiadomosc" cols="30"
rows="10"></textarea>

Płeć:
<input type="radio" name="plec" value="k"> Kobieta
<input type="radio" name="plec" value="m"> Mężczyzna
<input type="radio" name="plec" value="i"> Inne

<input type="submit" value="Zapisz" name="przycisk" />

<form action="" method="GET">

</form>

Znaczenie name

Imię: <input type="text" name="imie" />

Nazwisko: <input type="text" name="nazwisko" />

Wiadomość: <textarea name="wiadomosc" cols="30"
rows="10"></textarea>

Płeć:
<input type="radio" name="plec" value="k"> Kobieta
<input type="radio" name="plec" value="m"> Mężczyzna
<input type="radio" name="plec" value="i"> Inne

<input type="submit" value="Zapisz" name="przycisk" />

<form action="" method="GET">

</form>

name pozwala na
identyfikację elementów w
tablicy superglobalnej
$_POST lub $_GET

podane nazwy stają się
indeksami w tablicy

I gdzie te dane? - jak wygląda tablica $_GET

A tak to wygląda w URL’u

Jak podejrzeć tablicę superglobalną

Użycie znaczników
<pre></pre> pozwala na
czytelniejsze wyświetlenie
tablicy, bez nich wynik
wyświetlony zostanie w
jednej linii

Wyświetlanie elementów tablicy $_GET lub $_POST

$_POST $_GET

<?php

echo $_POST['nazwa_indeksu’];

?>

np. echo $_POST['imie']; np. echo $_GET['nazwisko'];

<?php

echo $_GET['nazwa_indeksu'];

?>

nazwa tablicy
(z góry określona)

Co z wielokrotnym wyborem? checkbox i select
multiple

Jeżeli mamy możliwość
zaznaczenia wielu opcji –
wrzucamy je do tablicy
name = " nazwa_tablicy[]"

checkbox i select multiple - wyświetlanie

Wyświetlamy pojedynczy element:

<?php
echo $_GET['indeks1']['indeks2'];
?>
np. echo $_GET['food’][0];
wyświetli pizza

<?php
foreach($_GET['hobby'] as $hobby){

echo $hobby."
";
}
?>

Wyświetlamy wszystkie zaznaczone opcje:

Sprawdzanie, czy formularz został przesłany

<?php
if ($_SERVER['REQUEST_METHOD'] === 'POST') {

echo "Formularz został wysłany!";
}

?>

<?php
if(isset($_POST['przycisk'])) {

echo "Naciśnięto przycisk";
}

?>

lub możemy sprawdzić czy naciśnięto przycisk

Możemy sprawdzić czy przesłano formularz

Nie pracujemy na nieistniejących danych, czyli
sprawdzamy czy pola zostały uzupełnione

isset()
Sprawdza czy zmienna
została przesłana i
nie jest NULL

$zmienna='';
echo isset($zmienna)

? 'zmienna została przesłana i nie jest NULL'
: 'zmienna nie została przesłana lub jest

NULL';

Nie pracujemy na nieistniejących danych, czyli
sprawdzamy czy pola zostały uzupełnione

empty() Ustala czy zmienna jest pusta.

Następujące wartości są uważane za
puste:
'' (pusty ciąg)

0 (0 jako integer)
0.0 (0 jako float)
'0' (0 jako string)

NULL
FALSE
array() (pusta tablica)

$zmienna=0;
if (empty($zmienna)) { echo '$zmienna jest równa zero,
pusta lub w ogóle nie została ustalona';}

przy polach, które mogą mieć wartość „0”, lepiej użyć:

if ($wiek === '' || $wiek === null) {
echo "Wiek jest wymagany";

}
lub
if (!isset($_POST['wiek']) || $_POST['wiek']
=== '') {

echo "Pole wiek nie może być puste";
}

empty(), isset() przykład

<?php
if ($_SERVER['REQUEST_METHOD'] === 'POST') {

// pobieramy wartości pól
$imie = $_POST['imie'] ?? '';
$wiek = $_POST['wiek'] ?? '';

// Sprawdzenie, czy pola istnieją
if (!isset($_POST['imie'], $_POST['wiek'])) {

echo "Brakuje wymaganych pól!";
}

// Sprawdzenie, czy pola nie są puste
if (empty($imie) || empty($wiek)) {

echo "Wszystkie pola są obowiązkowe!";
} else {

echo "Imię: $imie, Wiek: $wiek";
}

}
?>

Filtrowanie i zabezpieczenia pól przed atakami

Najczęstsze zagrożenia:

• XSS (Cross-Site Scripting) → np. ktoś wpisze <script>...</script> w

polu formularza

• Injection → próby manipulacji zapytaniami lub danymi

• Fałszywe dane (np. zmienione przez DevTools)

Dlatego stosujemy kilka warstw zabezpieczeń

htmlspecialchars() - ochrona przed XSS

Każde dane, które wyświetlasz z powrotem w HTML, należy
przepuścić przez tę funkcję:

$bezpieczne_imie = htmlspecialchars($imie, ENT_QUOTES, 'UTF-8');
echo "Witaj, $bezpieczne_imie!";

Używaj zawsze przy wyświetlaniu, nie przy zapisie

Zamienia <, >, ", ' na bezpieczne encje HTML

filter_input() - pobieranie danych z walidacją

PHP ma wbudowany system filtrów

$imie = filter_input(INPUT_POST, 'imie',
FILTER_SANITIZE_SPECIAL_CHARS);
$wiek = filter_input(INPUT_POST, 'wiek', FILTER_VALIDATE_INT);

if ($wiek === false) {
echo "Wiek musi być liczbą!";

}

Łatwiejsze i czytelniejsze niż ręczne $_POST

Możliwość walidacji e-maili, URL-i, liczb itd

Walidacja długości i formatu

Dodatkowo warto sprawdzać długości pól i dopuszczalne znaki

if (strlen($imie) < 2 || strlen($imie) > 50) {
echo "Imię musi mieć od 2 do 50 znaków.";

}

if (!preg_match('/^[a-ząćęłńóśźżA-ZĄĆĘŁŃÓŚŹŻ\s-]+$/', $imie)) {
echo "Imię zawiera niedozwolone znaki.";

}

Tokeny CSRF

Przy poważniejszych formularzach warto też stosować tokeny CSRF, żeby
zabezpieczyć się przed automatycznym wysyłaniem formularzy przez złośliwe strony
<?php
// przy wyświetlaniu formularza
session_start();
$_SESSION['token'] = bin2hex(random_bytes(32));
?>
<form method="post">
<input type="hidden" name="token" value="<?= $_SESSION['token'] ?>">
<input type="text" name="imie">
<button type="submit">Wyślij</button>

</form>
<?php
// przy przetwarzaniu
if (!hash_equals($_SESSION['token'], $_POST['token'] ?? '')) {

die('Błąd CSRF!');
}?>

Podsumowanie

Co sprawdzamy Jak to zrobić

Czy formularz wysłany $_SERVER['REQUEST_METHOD'] === 'POST'

Czy pola istnieją isset() lub ?? ''

Czy pola wypełnione $_POST['x'] === '' (lepiej niż empty() dla 0)

Ochrona XSS htmlspecialchars() przy wyświetlaniu

Walidacja danych filter_input(), regex, strlen

Ochrona przed CSRF token w sesji i formularzu

Inne zabezpieczenia Limity długości, typów, znaków

Kompletny przykład formularza z walidacją i
zabezpieczeniami

